A holistic approach for protein secondary structure estimation from infrared spectra in H(2)O solutions.
نویسندگان
چکیده
We present an improved technique for estimating protein secondary structure content from amide I and amide III band infrared spectra. This technique combines the superposition of reference spectra of pure secondary structure elements with simultaneous aromatic side chain, water vapor, and solvent background subtraction. Previous attempts to generate structural reference spectra from a basis set of reference protein spectra have had limited success because of inaccuracies arising from sequential background subtractions and spectral normalization, arbitrary spectral band truncation, and attempted resolution of spectroscopically degenerate structure classes. We eliminated these inaccuracies by defining a single mathematical function for protein spectra, permitting all subtractions, normalizations, and amide band deconvolution steps to be performed simultaneously using a single optimization algorithm. This approach circumvents many of the problems associated with the sequential nature of previous methods, especially with regard to removing the subjectivity involved in each processing step. A key element of this technique was the calculation of reference spectra for ordered helix, unordered helix, sheet, turns, and unordered structures from a basis set of spectra of well-characterized proteins. Structural reference spectra were generated in the amide I and amide III bands, both of which have been shown to be sensitive to protein secondary structure content. We accurately account for overlaps between amide and nonamide regions and allow different structure types to have different extinction coefficients. The agreement between our structure estimates, for proteins both inside and outside the basis set, and the corresponding determinations from X-ray crystallography is good.
منابع مشابه
Determination of the secondary structure content of proteins in aqueous solutions from their amide I and amide II infrared bands. Comparison between classical and partial least-squares methods.
A method for estimating protein secondary structure from infrared spectra has been developed. The infrared spectra of H2O solutions of 13 proteins of known crystal structure have been recorded and corrected for the spectral contribution of water in the amide I and II region by using the algorithm of Dousseau et al. [Dousseau, F., Therrien, M., & Pézolet, M. (1989) Appl. Spectrosc. 43, 538-542]....
متن کاملAn investigation of neutron direct damages at energies of 0.1-2 MeV on the DNA molecules with atomic structure deduced using Geant4 toolkit
This study proposes a method to estimate RBE of fast neutrons using Monte Carlo simulations. This approach is based on the combination of an atomic resolution DNA geometrical model and Monte Carlo simulations for tracking particles. Atomic positions were extracted from the Protein Data Bank. The GEANT4 code was used for tracking the secondary particles generated by fast neutrons during their in...
متن کاملO-Anisidine Degradation by Fenton’s Reagent and Reaction Time Estimation
O-Anisidines (OAs) are extensively used as an intermediate for chemical reactions to produce various triphenylmethane and azo dyes, and also in manufacturing numerous pigments. They are found to be highly toxic and have carcinogenic properties, so it is imperative to treat OA solutions before disposal. In this study a promising approach to degrade OA solutions has been carried out using Fenton’...
متن کاملA 'clusters-in-liquid' method for calculating infrared spectra identifies the proton-transfer mode in acidic aqueous solutions.
In liquid water the transfer of an excess proton between two water molecules occurs through the Zundel cation, H(2)O···H(+)···OH(2). The proton-transfer mode is the asymmetric stretch of the central O···H(+)···O moiety, but there is no consensus on its identification in the infrared spectra of acidic aqueous solutions. Also, in experiments with protonated gas-phase water clusters, its position ...
متن کاملProtein Secondary Structure Prediction: a Literature Review with Focus on Machine Learning Approaches
DNA sequence, containing all genetic traits is not a functional entity. Instead, it transfers to protein sequences by transcription and translation processes. This protein sequence takes on a 3D structure later, which is a functional unit and can manage biological interactions using the information encoded in DNA. Every life process one can figure is undertaken by proteins with specific functio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Analytical biochemistry
دوره 285 1 شماره
صفحات -
تاریخ انتشار 2000